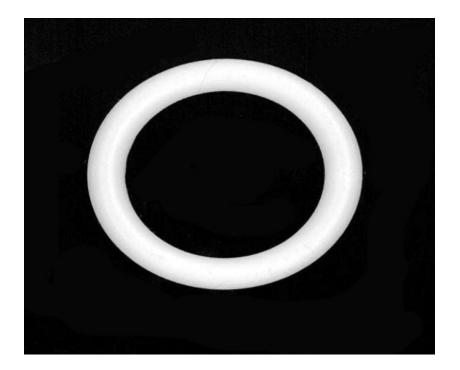
MTN 005: Preliminary Safety, Adherence, and Acceptability Data

MTN Annual Meeting February 11th, 2013

Craig Hoesley, MD University of Alabama at Birmingham


Study design

- Expanded safety and adherence study of a non-medicated intravaginal ring (IVR)
 - Randomized (2:1, IVR: no IVR), controlled trial of sexually active, HIV-uninfected women
- 3 sites (Birmingham, Bronx, Pune)
- Planned enrollment 252 women
 - NARI 150
 - UAB 51
 - Bronx-Lebanon Health Center -51

Study Product

Silicone elastomer ring

 Manufactured by Andromaco for the Population Council (IND holder)

Study Schema

Screening	Enrollment	4-Week	8-Week	12-Week	16-Week
GROUP	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
Α	[STUDY IVR U	SE PERIOD]	TERMINATION
В	[NO IVR (SA	ME STUDY VI	SITS AS GROUI	P A)]	

Primary Objectives

Evaluate the safety of the study IVR in HIV-uninfected women over 12 weeks of use

Evaluate the adherence to the study IVR in HIV-uninfected women over 12 weeks of use

Primary Endpoints

Grade 2 or higher genitourinary events

For women in IVR group, participant report of IVR removal and duration without IVR over 12 weeks of use

Secondary Objectives

- Evaluate the acceptability of the study IVR in HIV-uninfected women over 12 weeks of use
- Measure vaginal flora characteristics, and descriptively examine changes in these characteristics over the course of study IVR use

Secondary Endpoints

- For IVR arm, participant report of acceptability including genitourinary discomfort, ring insertion/removal issues, expulsions, and changes in participant and/or partner sexual feeling
- Changes in vaginal flora from enrollment to week 12 as measured by Gram stain Nugent score and quantitative culture

Study Timeline

- June 2011
 - First participants enrolled at UAB, BLHC
- □ January 2012
 - Last participants enrolled at UAB, BLHC
- □ February 2012
 - First participant enrolled at NARI
- □ April 2012
 - Last U.S. participant exited the study

Study Timeline (2)

- May 30, 2012
 - NARI investigators noted "spots" on 3 rings
 - Observed during scheduled assessments
 - Not related to adverse event
- □ June 4, 2012 8 spotted rings noted
 - No adverse events related to findings
 - Protocol team notes spotted rings not detected at U.S. sites

Study Timeline (3)

- June 7-11, 2012 NARI IRB and MTN recommended suspending enrollment, ring removal
 - 93 (of 150) women enrolled
 - Collect used and unused rings
 - Follow enrolled participants in IVR arm for 4 additional weeks as outlined in protocol
- □ June 20, 2012 PSRT review call
- □ September 2012
 - Last participant visit
- October 2012
 - Used rings shipped to NL, unused rings shipped to Population Council for further assessment

Study Population - Demographics

	All sites	NARI	BLHC	UAB
Participants enrolled	195	93	51	51
Mean age (years)	31.3	32.2	31.2	29.6
Married (N, %)	123 (63)	92 (99)	10 (20)	21 (41)
Unmarried, w/ primary sex partner	70 (36)	1 (1)	40 (78)	29 (57)
Highest level of education (N,	%)			
Secondary school complete	39 (20)	19 (20)	15 (29)	5 (10)
Attended university/college	107 (55)	31 (33)	30 (59)	46 (90)
Earns own income (N, %)	103 (67)	66 (71)	27 (53)	37 (73)
Partner provides financial support (N, %)	156 (81)	91 (98)	37 (74)	28 (56)

Safety Analysis – Adverse Events

	Not Related	Related	Total
Severity Grade	N (%)	N (%)	N (%)
Grade 1 – Mild	218 (74.7)	74 (25.3)	292 (79.1)
Grade 2 – Moderate	49 (67.1)	24 (32.9)	73 (19.8)
Grade 3 – Severe	4 (100)	0	4 (1.1)
Grade 4 – Life threatening	0	0	0
Grade 5 – Death	0	0	0
Total	271 (73.4)	98 (26.6)	369 (100)

Safety Analysis – Grade 3 Events

- □ Four Grade 3 events in 3 participants
 - Vomiting and Gastritis
 - Two distinct events
 - Not related
 - Hypotension
 - Not related
 - Vertigo
 - Not related
- No Grade 3 GU events

Safety Analysis (ITT) – All Sites

Arm	Enrolled	No. participants with ≥1 Grade 2 or higher GU event	Rate (Exact 95% CI)	p-value
IVR	131	27	0.206 (0.140, 0.286)	
No IVR	64	9	0.141 (0.066, 0.250	
Difference	e		0.066 (-0.086, 0.215)	0.33

Safety Analysis (ITT) – UAB

Arm	Enrolled	No. participants with ≥1 Grade 2 or higher GU event	Rate (Exact 95% CI)	p-value
IVR	34	12	0.353 (0.198, 0.535)	
No IVR	17	4	0.235 (0.068, 0.499)	
Difference	e		0.118 (-0186, 0.408)	0.53

Safety Analysis (ITT) – BLHC

Arm	Enrolled	No. participants with ≥1 Grade 2 or higher GU event	Rate (Exact 95% CI)	p-value
IVR	34	12	0.353 (0.198, 0.535)	
No IVR	17	4	0.235 (0.068, 0.499)	
Difference	e		0.118 (-0.186, 0.408)	0.53

Safety Analysis (ITT) – NARI

Arm	Enrolled	No. participants with ≥1 Grade 2 or higher GU event	Rate (Exact 95% CI)	p-value
IVR	63	3	0.048 (0.010, 0.133)	
No IVR	30	1	0.033 (0.001, 0.172)	
Difference	e		0.014 (-0.202, 0.229)	1.00

Safety Analysis (PP*) – All Sites

Arm	Enrolled/ Adherent	No. participants with ≥1 Grade 2 or higher GU event	Rate (Exact 95% CI)	p-value
IVR	127	27	0.213 (0.145, 0.294)	
No IVR	64	9	0.141 (0.066, 0.250)	
Difference	e		0.072 (-0.080, 0.219)	0.25

*Per-protocol analysis was performed by excluding visits of non-adherent participants

Product holds

	All Sites	NARI	BLHC	UAB
Participants enrolled	195	93	51	51
Ppts with \geq 1 product hold (N, %)	52 (27)	49 (53)	1 (2)	2 (4)
Number of product holds	54	51	1	2
Reasons for product hold (N, %)				
HIV +				
Pregnancy	1 (2)	1 (2)		
AE	4 (7)	2 (4)	1 (100)	1 (50)
Other*	49 (91)	48 (94)		1 (50)
Product resumed (N, %)				
Yes	1 (2)			1 (50)
No	53 (98)	51 (100)	1 (100)	1 (50)

* 1 participant co-enrolled in another study, 1 participant opted to discontinue participation in study, 47 participants' product held due to protocol team guidance

Spotted Rings

- 27 (39%) of 69 rings recovered from NARI study participants had identifiable dark spots
- 24 (50%) of 48 rings returned to NL had identifiable spots to the naked eye
- Unused rings available from NARI site
- All used U.S. rings available for comparative assessment

Spotted Rings

- MTN NL cut cross-sections of all of the returned rings
- Rings from the US sites were smooth and had no "bubbles" in the interior matrix
- 29 of the 48 rings from NARI had
 "bubbles" in the silicone elastomer matrix

Spotted Rings

- MTN NL: 100% correlation between "spots" and internal "bubbles"
- Spots or erosions on the ring surface could be replicated by brushing the surface of the rings with internal "bubbles" but not in rings without "bubbles."
- Conclusion: Silicone elastomer was not homogenous in the NARI rings which led to visual spotting on the ring surface

Adherence Analysis

Country	Evaluable participants enrolled in IVR arm	No. and % of participants with complete adherence
U.S. sites	67*	40 (59.7)
India site	63	35 (55.6)

* One participant missed all visits after enrollment and completed no forms regarding ring adherence

Adherence Analysis – IVR Removal

Country	Evaluable ppts. enrolled IVR arm	Avg. number of removals	Avg. period of time when IVR was outside vagina (days)
U.S. sites	67*	5.56	7.75
India site	63	2.79**	4.46**

* One participant missed all visits after enrollment and completed no forms regarding ring adherence

**For the India site, the average number of removals and the average period of time when the IVR was outside the vagina is based on a follow-up time of less than 12 weeks due to product hold. The mean IVR use for this group was ~ 9 weeks.

The average number of IVR removals per 30 days was similar at the U.S. and India sites (2.12 and 1.56, respectively).

Selected Acceptability Data

Response	U.S. (%) N=66	India (%) N=60
"Week 12" Acceptability Assessment:		
Prefer not to wear everyday	17%	13%
Prefer not to wear during menses	26%	25%
Not acceptable to primary partner	2%	10%
Worry about ring falling out	11%	32%*
Dislike wearing during sex	17%	20%
Would not wear, if partner doesn't like	3%	32%*
Changes the feeling of sex	18%	8%
Ring difficult or very difficult to use	5%	3%

Conclusions

- The unmedicated silicone elastomer IVR is safe in HIV-uninfected women over 12 weeks of use
- The presence of dark spots noted on some NARI rings was secondary to lack of homogeneity in ring manufacturing
 - No adverse events linked to this finding
 - Related to placebo rings only
 - Issue has never occurred with same ring when medicated
 - NARI investigators were diligent and responded promptly

Conclusions (2)

- Full adherence with IVR use was achieved over 12 weeks in over half the evaluable women
 - Mean number of IVR removals per 30 days was similar in India, U.S.
 - Further data mining needed relative to etiology of IVR removals
- IVR was deemed acceptable to the majority of women in India, U.S

Acknowledgements

National AIDS Research Institute, Pune, India

Sanjay Mehendale, MBBS, MD, MPH Mallika Alexander, MBBS, DGO Seema Sahay, MSc, PhD

Bronx-Lebanon Health Center

Jessica Justman, MD

Population Council

Barbara S. Mensch, PhD Pamela Clax Mohcine Alami, MD Deborah Tolenaar

SCHARP

Missy Cianciola, MS James Dai, PhD Jason Pan, PhD

<u>FHI</u>

Ayana Moore, PhD Katherine Richards, MPH Jonathan Paul Lucas, MPH

<u>NIH</u>

Lydia E. Soto-Torres, MD, MPH Roberta Black, PhD

MTN CORE, Network Lab

Beth Galaska Burzuk, MID Cindy Jacobson, PharmD Katherine Bunge, MD Devika Singh, MD, MPH Sharon Hilllier, PhD Lorna Rabe, BS, M (ASCP)

Protocol team wishes to thank all the 005 participants at the 3 sites for their willingness to volunteer for this study